Source code for pyoptsolver.pyoptsolver

from .pyoptsolvercpp import IpoptConfig, IpoptSolver
from .pyoptsolvercpp import SnoptConfig, SnoptSolver
from .pyoptsolvercpp import OptProblem, OptResult
from .pyoptsolvercpp import __with_snopt__, __with_ipopt__, __version__
import warnings
import six
import numpy as np
from scipy.optimize import NonlinearConstraint, minimize, Bounds
from scipy.sparse import coo_matrix


[docs]class OptConfig(object): """This class is used to keep track of various optimization configurations. It provides a unified interface for interacting with those solvers. Some custom options are also supported, but might not work depending on the backend. """ shared_options = {'major_iter', 'opt_tol', 'fea_tol', 'print_level', 'deriv_check'} snopt_options = {'minor_iter', 'iter_limit', 'print_file'} ipopt_options = {'print_freq', 'linear_solver', 'exact_hessian', 'fd_jacobian'} scipy_kws = {'tol'} scipy_option_kws = {'grad', 'xtol', 'gtol', 'barrier_tol', 'initial_constr_penalty', 'initial_tr_radius', 'initial_barrier_parameter', 'initial_barrier_tolerance', 'factorization_method', 'disp'} def __init__(self, backend='ipopt', **kw): if backend not in ['ipopt', 'snopt', 'scipy']: warnings.warn('Backend should be in ipopt, snopt, scipy') if __with_ipopt__ and backend == 'ipopt': self.backend = 'ipopt' self.option = IpoptConfig() elif __with_snopt__ and backend == 'snopt': self.backend = 'snopt' self.option = SnoptConfig() else: self.backend = 'scipy' self.option = {'options': {'sparse_jacobian': True}, 'tol': 1e-6} self._process_kw(**kw) def _process_kw(self, **kws): is_ipopt = self.backend == 'ipopt' is_snopt = self.backend == 'snopt' is_scipy = self.backend == 'scipy' if is_scipy: options = self.option['options'] for key, val in six.iteritems(kws): if key == 'major_iter': if not is_scipy: self.option.set_major_iter(val) else: options['maxiter'] = val elif key == 'opt_tol': if not is_scipy: self.option.set_opt_tol(val) else: options['gtol'] = val elif key == 'fea_tol': if not is_scipy: self.option.set_fea_tol(val) else: self.option['tol'] = val elif key == 'print_level': if not is_scipy: self.option.set_print_level(val) else: options['verbose'] = val elif key == 'deriv_check': if not is_scipy: self.option.enable_deriv_check(val) elif key == 'minor_iter': if is_snopt: self.option.set_minor_iter(val) elif key == 'iter_limit': if is_snopt: self.option.set_iter_limit(val) elif key == 'print_file': if is_snopt: self.option.print_file = val elif key == 'print_freq': if is_ipopt: self.option.set_print_freq(val) elif key == 'linear_solver': if is_ipopt: self.option.set_linear_solver(val) elif key == 'exact_hessian': if is_ipopt and val: self.option.enable_exact_hessian() elif key == 'fd_jacobian': if is_ipopt and val: self.option.enable_fd_jacobian() elif key in self.scipy_kws: self.option[key] = val elif key in self.scipy_option_kws: options[key] = val else: # considering we are adding several types if isinstance(val, int): if not is_scipy: self.option.add_int_option(key, val) elif isinstance(val, float): if not is_scipy: self.option.add_float_option(val) elif isinstance(val, str) or val is None: if is_snopt: self.option.add_string_option(key) elif is_ipopt: self.option.add_string_option(key, val)
[docs]class TrustConstrSolver(object): """A wrapper that builds on a already declared problem.""" def __init__(self, problem, option): assert isinstance(problem, OptProblem) self.problem = problem self.option = option self.g = np.zeros(problem.nG) self.y = np.zeros(problem.nf) self.row, self.col = np.zeros((2, problem.nG), dtype=int) if not problem.ipstyle: self.Aval = problem.Aval self.Arow = problem.Arow.astype(int) self.Acol = problem.Acol.astype(int) self.obj_a_indice = np.where(problem.Arow == 0) self.A_csc = coo_matrix((self.Aval, (self.Arow, self.Acol)), shape=(problem.nf, problem.nx)) def _get_coo(self): if self.problem.ipstyle: return coo_matrix((self.g, (self.row, self.col)), shape=(self.problem.nf, self.problem.nx)) else: return coo_matrix((np.concatenate((self.g, self.Aval)), (np.concatenate((self.row, self.Arow)), np.concatenate((self.col, self.Acol)))), shape=(self.problem.nf, self.problem.nx))
[docs] def solve_rand(self): guess = self.problem.random_gen_x() return self.solve_guess(guess)
[docs] def solve_guess(self, guess): if self.problem.ipstyle: def confun(x): self.problem.eval_constr(x, self.y) return self.y def jacfun(x): self.problem.__jacobian__(x, self.g, self.row, self.col, False) return self._get_coo() def costfun(x): g = np.zeros_like(x) self.problem.eval_gradient(x, g) return self.problem.__cost__(x), g # figure out the jacobian sparsity self.problem.__jacobian__(guess, self.g, self.row, self.col, True) else: def confun(x): if self.problem.grad: self.problem.__callg__(x, self.y, self.g, self.row, self.col, False, False) else: self.problem.__callf__(x, self.y) self.y += self.A_csc.dot(x) return self.y def jacfun(x): self.problem.__callg__(x, self.y, self.g, self.row, self.col, False, True) return self._get_coo() def costfun(x): self.problem.__callg__(x, self.y, self.g, self.row, self.col, False, True) if not hasattr(self, 'cost_row_mask'): self.cost_row_mask = np.where(self.row == 0)[0] grad = np.zeros_like(x) grad[self.col[self.cost_row_mask]] = self.g[self.cost_row_mask] grad[self.Acol[self.obj_a_indice]] = self.Aval[self.obj_a_indice] return self.y[0], grad # figure out the jacobian sparsity self.problem.__callg__(guess, self.y, self.g, self.row, self.col, True, True) # jac0 = self._get_coo() constr = NonlinearConstraint(confun, self.problem.get_lb(), self.problem.get_ub(), jac=jacfun) bounds = Bounds(self.problem.get_xlb(), self.problem.get_xub()) res = minimize(costfun, guess, method='trust-constr', jac=True, bounds=bounds, constraints=constr, **self.option) # use the attr trick to add contents to returned res setattr(res, 'obj', res.fun) setattr(res, 'flag', res.status != 0 and res.constr_violation < self.option['tol']) setattr(res, 'sol', res.x) setattr(res, 'fval', res.constr) setattr(res, 'lmd', res.v) setattr(res, 'xmul', res.v) return res
[docs]class OptSolver(object): def __init__(self, problem, config): if config.backend == 'snopt': self.solver = SnoptSolver(problem, config.option) elif config.backend == 'ipopt': self.solver = IpoptSolver(problem, config.option) else: self.solver = TrustConstrSolver(problem, config.option)
[docs] def solve_rand(self): return self.solver.solve_rand()
[docs] def solve_guess(self, guess): return self.solver.solve_guess(guess)