Source code for trajoptlib.trajOptManifoldCollocationProblem

#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8
#
# Copyright © 2018 Gao Tang <gt70@duke.edu>
#
# Distributed under terms of the MIT license.

r"""
trajOptManifoldCollocationProblem.py

Direct collocation approach with manifold constraint.
We introduce additional variables to solve this issue.
Here the order of a system is really helpful.
For a constraint \phi(q)=0, by order we know up to which we should differentiate the constraints.
"""
from __future__ import division
import numpy as np
from .trajOptCollocationProblem import TrajOptCollocProblem
from pyoptsolver import OptProblem


[docs]class ManifoldConstr(object): """An object which defines state manifold constraints. We might need other ugly hacks. Update 1, remove support for constr_order, only allow holonomic constraint, i.e. q However, user is allowed to control to any level, position / velocity / acceleration level. For different daeOrder, the implementation is slightly different :currentmodule: .. automethod:: __callg__ .. automethod:: __calc_correction__ """ def __init__(self, nx, nc, order=2, nG=0, nnzJx=0, nnzJg=0): r"""Constructor for the class. Parameters ---------- nx : the system state dimension, for daeSystem it is order * nf nc : the manifold constraint dimension, it is not multiplied by order yet order : the order of the daeSystem constr_order : which order of states (number of time derivative) does the constraint first appear nG : non-zero of the output Jacobian nnzJx : int, nnz for Jacobian of (J^T \gamma) w.r.t. x nnzJg : int, nnz for Jacobian of (J^T \gamma) w.r.t. gamma """ self.nx = nx self.nc = nc self.nf = (order + 1) * nc self.nG = nG self.nnzJ_gamma = nnzJg self.nnzJ_x = nnzJx
[docs] def __callg__(self, x, F, G, row, col, rec, needg): """Constraint evaluation up to order with no correction. This function serves as a basic path constraint imposed on every knot point It is different from nonLinearPointConstr in the following: 1. It is autonomous and time is not considered 2. Only state variables are passed in, no u or p is used Parameters ---------- x : ndarray, the state variables including q, dq, ddq, etc gamma : ndarray, the correction term F : ndarray, it stores the calculation values G, row, col : ndarray, the triplet for Jacobian return rec, needg : control if G is calculated and row, col are modified Returns ------- This subroutine has no return. """ raise NotImplementedError
[docs] def __calc_correction__(self, x, gamma, y, Gq, rowq, colq, Gg, rowg, colg, rec, needg): r"""Calculate the correction term It calculate J(qc)^T \gamma, and the sparse Jacobians associated with it Parameters ---------- x : array-like, q, dq, ddq, etc gamma : array-like, the correction vector gamma y : array-like, the function calculation value, it is essentially J(qc)^T \gamma Gq, rowq, colq : array-like, store the Jacobian of correction term w.r.t. x Gg, rowg, colg : array-like, store the Jacobian of correction term w.r.t. gamma rec : if we record row and column information needg : if we calculate G Returns ------- Calculations are done in-place so no return is required. """ raise NotImplementedError
[docs]class TrajOptManifoldCollocProblem(TrajOptCollocProblem): """A class for solving state equality constrained problem. The difference between this class with trajOptCollocProblem is 1. This class directly handles state constrained problem 2. This class introduce additional variables at collocation points and change deflect constraints 3. Additional parameters are linearly interpolated previously, now we let it unconstrained. This is in fact the same with adding 4. How variables are arranged are different 5. The state constraints should be defined using a special class which returns higher order time derivatives The optimization variables are arranged by 1. Trajectory region, (2*N - 1) * [q, dq, ddq, ..., u, p] 2. t0 and tf region, it might be empty 3. addX region, of length lenAddX 4. gamma region, of length (N-1) * (man_constr.nf) 5. Auxiliary objective region """ def __init__(self, sys, N, t0, tf, man_constr, addx=None): """Constructor for the class, the user is required to provide dynamical system, discretization size, allowable times, state manifold constraint, and possibly auxiliary variables. Parameters ---------- sys : the system instance which describes system dynamics N : int, discretization grid size t0 : float/array-like, allowable initial time tf : float/array-like, allowable final time man_constr : manifold constraint addx : list of addX / one addX / None, additional optimization variables. """ TrajOptCollocProblem.__init__(self, sys, N, t0, tf, addx) # modify a few parameters due to introduction of man_constr man_constr_dim = man_constr.nc ext_man_constr_dim = man_constr.nf self.numGamma = (N - 1) * man_constr_dim assert isinstance(man_constr, ManifoldConstr) self.man_constr = man_constr self.man_constr_dim = man_constr_dim self.ext_man_constr_dim = ext_man_constr_dim self.numSol += self.numGamma # add gamma to optimization variables
[docs] def pre_process(self, defect_u=True, defect_p=False, gamma_bound=1): """Initialize the problem, allocating spaces. Compared with trajOptCollocProblem, it has new sets of variables, different constraints. It supports limitation of magnitude of gamma, as gamma_bound means. """ self.colloc_constr_is_on = False # we never need this, actually self.defectU = defect_u self.defectP = defect_p numDyn = self.dimdyn * self.nPoint # constraints from system dynamics, they are imposed everywhere dynDefectSize = 2 * self.daeOrder * self.dimdyn self.dynDefectSize = dynDefectSize defectSize = dynDefectSize if defect_u: defectSize += self.dimu if defect_p: defectSize += self.dimp self.defectSize = defectSize numDefectDyn = (self.N - 1) * defectSize # from enforcing those guys self.numDefectDyn = numDefectDyn self.numDyn = numDyn + numDefectDyn # from both nonlinear dynamics and linear defect constraints # calculate number of constraint numC, nnonlincon, nlincon = self.__sumConstrNum__() nnonlincon += self.N * self.man_constr.nf # add constraint from manifold constraint numC += self.N * self.man_constr.nf self.numLinCon = nlincon self.numNonLinCon = nnonlincon TrajOptCollocProblem.__findMaxNG__(self) self.numF = 1 + numDyn + numDefectDyn + numC # analyze all objective functions in order to detect pattern for A, and additional variables for other nonlinear objective function spA, addn = self.__analyzeObj__(self.numSol, self.numF) self.objaddn = addn # this is important for multiple objective function support self.numSol += addn self.numF += addn OptProblem.__init__(self, self.numSol, self.numF) # not providing G means we use finite-difference # we are ready to write Aval, Arow, Acol for this problem. They are arranged right after dynamics self.__setAPattern__(numDyn, nnonlincon, spA) self.__setXbound__(gamma_bound) self.__setFbound__() # detect gradient information randX = self.randomGenX() self.__turnOnGrad__(randX)
def __getSparsity__(self, x0): """Detect the sparsity pattern with an initial guess.""" TrajOptCollocProblem.__getSparsity__(self, x0) # add nnz Jacobian from defect constraint, i.e. J(q)^T \gamma self.numG += (self.N - 1) * (self.man_constr.nnzJ_gamma + self.man_constr.nnzJ_x) # add nnz Jacobian from manifold constraint on knot points self.numG += self.N * self.man_constr.nG self.nG = self.numG def __callg__(self, x, y, G, row, col, rec, needg): """Evaluate those constraints, objective functions, and constraints. It simultaneously allocates sparsity matrix. :param x: ndarray, the solution to the problem :param y: ndarray, return F :param G, row, col: ndarray, information of gradient :param rec, needg: if we record/ if we need gradient """ y[0] = 0 # since this row is purely linear h, useT = self.__get_time_grid__(x) useX, useU, useP = self.__parseX__(x) useGamma = self.__parseGamma__(x) # loop over all system dynamics constraint curRow = 1 curNg = 0 curRow, curNg = self.__dynconstr_mode_g__(curRow, curNg, h, useT, useX, useU, useP, useGamma, y, G, row, col, rec, needg) curRow, curNg = self.__constr_mode_g__(curRow, curNg, h, useT, useX, useU, useP, x, y, G, row, col, rec, needg) curRow, curNg = self.__manifold_constr_mode_g__(curRow, curNg, useX, y, G, row, col, rec, needg) curRow += self.numLinCon # loop over all the objective functions, I haven't checked if order is correct since some linear constraints are followed curRow, curNg = self.__obj_mode_g__(curRow, curNg, h, useT, useX, useU, useP, x, y, G, row, col, rec, needg) return curRow, curNg def __manifold_constr_mode_g__(self, curRow, curNg, useX, y, G, row, col, rec, needg): """Calculate the manifold constraints on knots with autonomous assumption.""" for i in range(self.N): next_Ng = curNg + self.man_constr.nG next_Row = curRow + self.ext_man_constr_dim pieceG = G[curNg: next_Ng] pieceRow = row[curNg: next_Ng] pieceCol = col[curNg: next_Ng] self.man_constr.__callg__(useX[2*i], y[curRow: next_Row], pieceG, pieceRow, pieceCol, rec, needg) if rec: pieceRow += curRow pieceCol += self.getStateIndexByIndex(2*i) curRow = next_Row curNg = next_Ng return curRow, curNg def __dynconstr_mode_g__(self, curRow, curNg, h, useT, useX, useU, useP, useGamma, y, G, row, col, rec, needg): """Evaluate the constraints imposed by system dynamics. Code are copied and modified. We implement this by call the trajOptCollocProblem version and append some variables """ nPoint = self.nPoint dimdyn = self.dimdyn dimq = self.dimq if self.daeOrder == 2: cur_row = curRow + nPoint * dimdyn + dimq # We add additional dimdyn since it where J^T\gamma comes into play row_step = self.dynDefectSize else: cur_row = curRow row_step = dimdyn # call ordinary dyn constr curRow, curNg = TrajOptCollocProblem.__dynconstr_mode_g__(self, curRow, curNg, h, useT, useX, useU, useP, y, G, row, col, rec, needg) # loop over defect constraints tmpy = np.zeros(dimq) for i in range(self.N - 1): # this is done by calling the __calc_correction__ function implemented by the user # the only difference is it calculates two sets of sparse Jacobian, and it is autonomous # for second-order system, there is no problem, but for first order one, we implicitly assume the first dimq are Gx = G[curNg: curNg + self.man_constr.nnzJ_x] rowx = row[curNg: curNg + self.man_constr.nnzJ_x] colx = col[curNg: curNg + self.man_constr.nnzJ_x] curNg += self.man_constr.nnzJ_x Gg = G[curNg: curNg + self.man_constr.nnzJ_gamma] rowg = row[curNg: curNg + self.man_constr.nnzJ_gamma] colg = col[curNg: curNg + self.man_constr.nnzJ_gamma] curNg += self.man_constr.nnzJ_gamma self.man_constr.__calc_correction__(useX[2*i + 1, :dimq], useGamma[i], tmpy, Gx, rowx, colx, Gg, rowg, colg, rec, needg) y[cur_row: cur_row+dimq] += tmpy if rec: rowx += cur_row rowg += cur_row colg += self.getGammaIndexByIndex(i) colx += self.getStateIndexByIndex(2*i + 1) cur_row += row_step return curRow, curNg
[docs] def parseF(self, guess): """Alias for :func:`trajOptLib.TrajOptManifoldCollocProblem.parse_f`""" return self.parse_f(guess)
[docs] def parse_f(self, guess): """Give an guess, evaluate it and parse into parts. :param guess: ndarray, (numSol, ) a guess or a solution to check :returns: dict, containing objective and parsed constraints """ assert len(guess) == self.numSol N = self.N dimdyn = self.dimdyn nf = self.man_constr.nf y = np.zeros(self.numF) # call previous function rst = TrajOptCollocProblem.parse_f(self, guess, y) numC, nnonlincon, nlincon = self.__sumConstrNum__() curN = 1 + (2 * N - 1) * dimdyn + self.numDefectDyn + nnonlincon manCon = np.reshape(y[curN: curN + N*nf], (N, nf)) rst['man'] = manCon # we ignore linear and auxVc constraints useGamma = self.__parseGamma__(guess) rst['gamma'] = useGamma return rst
def __parseGamma__(self, x): """Return gamma as a N - 1 by correct size np array""" n1 = self.numTraj + self.lenAddX return np.reshape(x[n1: n1 + self.numGamma], (self.N - 1, -1))
[docs] def getGammaIndexByIndex(self, i): """Return the index of gamma by its index.""" return self.numTraj + self.lenAddX + i * self.man_constr_dim
def __setXbound__(self, gamma_bound): """Set bounds on decision variables.""" TrajOptCollocProblem.__setXbound__(self) # we only need to set gamma which are unbounded curN = self.numTraj + self.lenAddX # gamma cannot be too large, I guess self.batch_set_xlb(-gamma_bound*np.ones(self.numGamma), curN) self.batch_set_xub(gamma_bound*np.ones(self.numGamma), curN) def __setFbound__(self): """Set bound on F""" # set bound on F numF = self.numF numDyn = self.numDyn clb = np.zeros(numF) cub = np.zeros(numF) clb[0] = -1e20 cub[0] = 1e20 cind0 = 1 + numDyn cind0 = self._setNonLinConstr(clb, cub, cind0) cind0 = self._setManifoldConstr(clb, cub, cind0) cind0 = self._setLinConstr(clb, cub, cind0) # assign to where it should belong to self.lb = clb self.ub = cub def _setManifoldConstr(self, clb, cub, cind0): """Set the manifold constraint.""" cindf = cind0 + self.N * self.man_constr.nf clb[cind0: cindf] = 0 cub[cind0: cindf] = 0 return cindf